宁波材料所在鱼鳔启发的水下自感知软体驱动器方面取得进展
基于中国科学院宁波材料技术与工程研究所陈涛研究员课题组在柔性传感器和软驱动器方面的研究基础(Adv. Mater., 2020, 2004290; Nat. Commun., 2020, 11, 4359; Angew. Chem. Int.Ed., 2019, 58,16243; J. Mater. Chem. A, 2019, 7, 26631; ACS Nano, 2019, 13, 4368; Nano Energy, 2019, 59, 422; Adv. Funct. Mater., 2018, 28, 1704568; Chem. Mater., 2018, 30, 4343; J. Mater. Chem. C, 2018, 6, 5140; J. Mater. Chem. C, 2018, 6, 6666等)。近期,受到小丑鱼鱼鳔同时具有感知和变形驱动功能的启发,开发了一种水下自感知的软驱动器。
该工作通过在水/空界面制备超薄的聚二甲基硅氧烷(PDMS)和PDMS/碳纳米管(CNTs) Janus膜,由于其良好的自适性和粘性,通过将上述薄膜无缝转移集成为一个三明治复合膜,以模仿鱼鳔膜。以可拉伸的弹性PDMS基体模仿鱼鳔的充气/放气变形行为,而用导电CNTs网络薄膜模仿鱼鳔具有类似皮肤神经网络的感知功能。由于复合薄膜良好的弹性、自适性和保形性,它可以进一步转移至一个中空的模型上形成自封闭的人工鱼鳔。外界气压的变化时,会引起复合膜发生膨胀或者凹陷变形。根据压阻传感机理,复合薄膜的这种形变会引起碳纳米管导电网络间接触电阻的变化,从而实现对变形行为的实时监测。当将整个系统置于水中时,可以用膜的膨胀和凹陷行为模仿鱼鳔的充气/放气行为,通过调节外界气压可以实现对整个系统在水中的上下运动行为的精确控制,同时其运动过程也可以通过电信号实时监测。此外,还能实现对外界信号的监测感知并根据感知信号执行气动驱动行为。因此,该研究成功地将传感和驱动功能集成到一个三明治复合膜中,实现了协同仿生行为,在智能集成软机器人方面展示出巨大的潜力。
该工作以题为“Biomimetic Underwater Self-Perceptive Actuating Soft System Based on Highly Compliant, Morphable and Conductive Sandwiched Thin Films”的论文发表在Nano Energy, 2020, DOI.org/10.1016/j.nanoen.2020.105617。本研究得到了国家自然科学基金(52073295,51803226)、中国科学院前沿科学重点研究项目(QYZDB-SSWSLH036)、中国科学院国际合作局(174433KYSB20170061)、博士后创新人才支持计划(BX20180321)、中国博士后科学基金(2018M630695)和宁波市科技创新2025重大专项(2018B10057)等项目的资助。
(高分子与复合材料实验室 梁云)